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A POSTERIORI ERROR BOUNDS 
FOR PIECEWISE LINEAR APPROXIMATE SOLUTIONS 

OF ELLIPTIC EQUATIONS OF MONOTONE TYPE 

KOICHI NIIJIMA 

ABSTRACT. We present a method for computing a posteriori error bounds for 
piecewise linear approximate solutions of elliptic equations of monotone type. 
The method is based on a relation between a line integral on an edge of a triangle 
and volume integrals in the triangle. 

1. INTRODUCTION 

There has been a great deal of work on a priori error estimates for numerical 
solutions of linear and nonlinear elliptic equations. A priori estimates can give 
convergence rates on mesh size, but cannot provide actual error bounds. A 
priori error bounds usually contain higher derivatives of exact solutions whose 
existence is often assumed. 

In contrast with a priori error estimates, there are only a few results con- 
cerning a posteriori error estimates in essentially two-dimensional problems. 
Babuska and Rheinboldt have developed a theory of a posteriori error estimates 
for finite element solutions of one-dimensional linear problems [1]. Based on 
this theory, local mesh refinements have been carried out successfully for sam- 
ple problems [3]. They have further extended their ideas to two-dimensional 
linear elliptic problems and have obtained lower and upper error estimators for 
finite element solutions [2]. However, in general, only approximations of these 
estimators can be computed. Bank and Weiser [4] have also given a method for 
getting a posteriori error bounds for finite element calculations. The problem 
treated there is a linear elliptic equation with a Neumann condition. 

In this work, we propose a method for computing a posteriori error bounds 
for continuous piecewise linear approximate solutions of elliptic equations of 
monotone type. The fact that approximate solutions are piecewise linear plays 
an essential role in our analysis. Generally, numerical solutions do not nec- 
essarily have a continuous piecewise linear form. So the computed data are 
interpolated piecewise linearly in order to apply our method. We permit that 
the data include rounding errors. The success of our analysis lies in a relation 
between an integral on an edge of a triangle and volume integrals in the triangle. 
This relation will be given in Lemma 1. Combining the relation with a jump 
in normal derivative of computed solutions at interelement boundaries enables 
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us to get an expression for an inner product on errors. The expression can be 
bounded from above using the Schwarz inequality. On the other hand, a bound 
from below of the inner product is easily derived with the aid of a monotonicity 
condition. Thus, computable error bounds can be obtained. The error bounds 
are quadratic functions of free parameters. Optimal error bounds are obtained 
by solving quadratic minimization problems. The feature of our method is that 
error estimates do not require the high regularity for the exact solution of the 
original problem. It suffices to assume only an HI regularity for the solution. 
In the last section, the effectiveness of our method will be examined through 
several numerical results. 

2. PROBLEM AND NOTATION 

Let Q be a bounded polyhedral domain in R2 with boundary aQ. We 
consider the following problem: 

(2.1) -Au + f(x, yu , Vu) = 0 in Q, 
(2.2) u=O onOQ, 

where Vu = (u,, uy,). 
Let co be a subdomain in Q, and let HI (co) be the linear space of functions 

whose distributional first derivatives are in L2(wO) . By Ho (Q) we denote the 
closure of C0 (Q) in HI(Q) . Denote the L2(Q) inner product by (, .), and 
the L2(Q) norm by 11 11 

A weak form of (2.1) and (2.2) is 

(2.3) (Vu, Vv) + (f(x, y, u, Vu), v) = 0 

for any v E Ho (Q) . 
We assume that 
Hi. The function f satisfies the following growth condition: 

If(x, y, s, t)I < C[z(x, y) + IslV + ItlV], 

where C is a positive constant, z E LP (Q) with arbitrary p > 1 , and ,u = p - , 
v = 2(p- 1)/p. 

H2. There exist a > 0 and fi > 0 such that for v, w E Ho (Q), 

(V(v -w), V(v -w)) + (f(x, y, v, Vv)- f(x, y, w, Vw), v -w) 
> ally - w112 + flljV(v - w)112. 

Under assumptions Hi and H2, (2.3) has a unique solution in Ho (Q) (see 
[5, pp. 143, 247]). 

Consider a triangulation of Q and denote the triangles by I, T_, and T+. 
Let F be the set of triangles. The edges of triangles are denoted by y and yi . 
Let EQ be the set of edges not on aQ, and EaQ the set of edges on aQ. Put 
E = EQ U EaQ. The boundary of the triangle T is denoted by OT. Let (., )T 
be the L2(T) inner product and (., .))y the L2(y) inner product. 

For each edge in E, we determine a normal direction which is denoted by 
n. Let two triangles sharing an edge y in EQ be T_ and T+, where n is 
outward from T_ (see Figure 1). 
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(Xi, IY) 

Tsl Ye) Y+ 

(X2i2 Y2) 

FIGURE 1 

Let h be the maximal diameter of the triangles and let uh be a continuous 
piecewise linear function. We define a jump in a uh /0 n across y by 

E aUh 1 9 Uh 9 aUh 
an an + an 

Note that this quantity does not depend on the direction of n. For later con- 
venience, we define [auh]y = 1 for an edge y in E0Q . 

3. A PRELIMINARY RESULT 

Let T be a triangle and let the three edges of the triangle be Y1, Y2, and Y3. 
Denote the vertices corresponding to Y1, Y2, and Y3 by (xI , Yi), (x2, Y2), and 
(X3, Y3), respectively. 

We have the following lemma. 

Lemma 1. For g E HI (T), it holds that 

(1, g)y3 Y|31 [2(1, g)T + (X -X3 X ()T +Y - Y3, gy)T] X IJI 
where 

JT= (X2 -X1)(Y3 -Y) - (X3 -X1)(Y2 -YO) 
and IY31 indicates the length of Y3 . 

Proof. Let T be a triangle having the vertices 0(0, 0), P(1, 0), and Q(0, 1), 
and give the function G E HI (T) . First we show that 

2 G(X, O)dX= JG(X, Y)dXdY+ ? X<X(X, Y)dXdY 

2]T(I Y)aG (X Y) dX d Y. 

Integrating by parts, 

IXT (X, Y)dXdYj [lYXOG(X, Y)dX] dY 
jI [ 1-Y1 

(3.2) = [(1 - Y)G(1 - Y, Y) - G(X, Y) dX dY 

=j; (1 - Y)G(1 - Y, Y) dY - G(X, Y) dXd Y. 
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A(xi, Y1) 

B(x2, Y2) 

C(X3, Y3) 

FIGURE 2 

Using again integration by parts, we get 

I( - YT(X Y) dXd I [ (1 - Y)2(x, Y)dY] dX 

(3.3) = XG(X,1I- X) -G(X, 0)+ G(X, Y)dY dX 

=J XG(X, 1 -X)dX-j G(X, O)dX+ JG(X, Y)dXdY. 

Since 

j1(1-Y)G(l-Y, Y)dYj XG(X1 -X)dX, 

substituting (3.2) and (3.3) into the right-hand side of (3.1) leads to the left-hand 
side of (3.1). 

We shall derive the formula in Lemma 1. Consider the triangle T with the 
vertices A(xi, Yi), B(x2, Y2), and C(x3, y3) (see Figure 2). 

A linear transformation mapping 0, P, and Q in the master element to 
A, B, and C, respectively, is given by 

X = (X2 - X)X + (X3 -x)Y + xI1 

Y = (Y2 -yO)X+ (y3 -Yl)Y+Yl- 

For g E HI(T), we define G(X, Y) by 

G(X, Y)-g((X2 - XOX + (X3 - xI)Y + xI, (Y2 - yO)X + (Y3 - Y)Y + Y0) 

and apply formula (3.1) to this G. By the change of variables h3X = s with 
h3 = /(X2 - X1)2 + (Y2 - yi)2, the left-hand side of (3.1) becomes 

(3.4) 2 G(X, O)dX= 2 3g (x2xlsX Y2 Y ) ds. 

On the other hand, since the Jacobian takes the form 

JT = (X2 XI) (Y3 -Y) (X3 -x ) (Y2 -Y0) 

and dXdY = IJTI dx dy, we have 

(3.5) JG(X, Y) dXdY= Jj g(x, y) dxdy. 



A POSTERIORI ERROR BOUNDS 553 

Using the relations 

X = - [(x -X)(y3 -Y) - (X3 -x)(y -Yi)I, JT 
1 

Y = [(X2 - X)(y - Y) - (x - x)(y2 - Y)I, JT 
we further have 

OG 
_(XI ) = ag(_ x _ 

)_(X2 -XI) +ag(xX, Y)(Y2 -Yi), 

Gx(X, Y) = O9(x , Y)(X3 - xI) + oag x Y)(Y3 -yYO 
ay a~x Oy 

Consequently, 

IXaG(X, Y)dXdY 

_ 11 
(3.6) I.JI j[(x - xl)(y3 - YO) - (x3 - xl)(y - Y1)] 

_____ O) g(x, y) y y 
* [g~x y(X2 -XI) + ag -y(Y2-yl)] dxdy, a x OyJ 

IT - Y)0a(X, Y)dXdY 

(3.7) 1 [ (x2I- xl)(y-Y) - (x - xl)(y2-Yl)1 ( 3 ) =j 
|JT I - JT 

O [ ax O- XY) + Y3 _y I) dx dy. 

Substituting (3.4), (3.5), (3.6), and (3.7) into (3.1) yields 

Jhg (x2h +31, Y2h - +Y1?,) ds 

- I~hrIJtg(xy)dx IJ-I (x-X3) dxdY 

+ h3 (Y -Y3) g(x, Y) dxdy 

whose inner product version is the desired result. U 

This relation is a formula changing a line integral on an edge into the sum of 
three volume integrals over T. By virtue of this formula, we can rewrite the line 
integrals appearing in partial integrations of the gradient term by elementwise 
volume integrals. 

4. MAIN RESULTS 

Let uh be a continuous piecewise linear interpolant for data obtained by 
solving (2.3) by some approximate methods. From now on, we call this uh a 
piecewise linear interpolate solution of (2.3). Let T be any triangle in F and 
denote the three edges of T by Y1, Y2, and y3 - 
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We now define an operator Ah by 

A~h 2 
3 

[9Ouh AT 
U=IJTI 

WT, i lPi | [an] 

Here, if yj is in EQ, then the corresponding WT,i denotes a free parameter 
satisfying 

WT, i + WTit 1 

for the parameter WT', ', where T' indicates the other triangle sharing yi . If 

yi is in Ea3Q, then the corresponding wT,i is free and [% Uh ]y = 1 as defined 
before. 

Using the same symbols as above, we define a two-dimensional vector rTh as 
follows: 

r~~ (3 _9 [O- uh] ( 
r = ||[ WT i I hi ia (x - Xi), WT, ili [an] ( - yi)) 

We define Ah and rh by Ah = (Ah)TEF and rh = (rTh)T F, respectively. By W, 
we denote the set of vectors whose components consist of all WT. 

The following lemma holds. 

Lemma 2. Let u be a solution of (2.3) and let uh be a piecewise linear inter- 
polate solution of (2.3). We put e = u - uh and define L by 

L = (Ve, Ve) + (f(x, y, u, Vu) - f(x, y, Uh, Vuh), e). 

Then we have 
L = -(-AhUh + fh, e) + (rh, Ve), 

where we set fh - f(x, y, Uh, Vuh) for simplicity. 
Proof. By the definition of e, 

L = (Vu, Ve) + (f(x, y, u, Vu), e) - (Vuh, Ve) - (f(x, y, uh, Vuh), e). 

Choosing v = e in (2.3), we get 

(Vu, Ve) + (f(x, y, u, Vu), e) = 0. 

Hence, 

(4.1) L = -(Vuh , Ve) -(f(x, y, Uh , Vuh), e). 

We put 
M=-(Vuh, Ve) 

and rewrite M as 
M =-(Vuh, Ve)T. 

TEF 

Integrating each term by parts yields 

/ =uh 

TEF \Ono /T 
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where no is the outward normal for T. Noticing that the outward normal for 
z is the inward normal for a neighbor sharing a common edge, we may write 
M as 

M=Z K[ An ] , e) - n X e). 
YEEjj ?' YEE, 

For the first term of the right-hand side, we remark that [ au, y is constant 
on y E Ea . For the second term of the right-hand side, we can write a free 
parameter -wT instead of aauh T being a triangle with the edge y , since &no 

ely = 0 for y in Eau. Thus we have 

(4.2) M= n (I, e)+E 
yEEa Y yEEa 

For an edge y in Ea, let two triangles sharing y be Tz and T+ as in Figure 
1. By Lemma 1, 

(4.3) (1, e) ly- [2(1, e)T + (x - X-, ex)T- + (y - y-, ey)T-] 

(4.4) (l, e)y - I j [2(1, e)T++ (x-x+ ex)T+ + (y -y+ ey)T+], 

where 

J- = (x2 -x)(y- -Yi) - (x -X1)(Y2 -Yi), 
J+ = (x2 - xl)(y+ - Y) - (x+ -x)(y2 -Y). 

Multiplying both sides of (4.3) and (4.4) by WT_ and w+ , which satisfy WT + 

WT+ = 1, and summing the resulting equations, we get 

(1, e)y = 2 I2 'I (1 , e)T + WT+ IJ(l, e)T+] 

+ WT_ IJl [(X - X_, eX)T- + (Y - Y_ ey)T_] 

- IJ-I 

2+ [(X x+, eX)T+ + (y - y+, ey)T+] 

For an edge y in Eau, we adopt (4.3) or (4.4). Substituting these expressions 
into (4.2) and changing the indexes properly, we have, by the definition of Ah 
and rh, 

M = (AhU , e) + (rh, Ve). 
We further have by (4.1), 

L = -(AhUh + h, e) + (rh Ve), 
which proves Lemma 2. 0 

We are now ready to describe our main result. 

Theorem. Let u be a solution of (2.3) and let uh be a piecewise linear inter- 
polate solution of (2.3). Let a and fi be defined in assumption H2. Then we 
have, for e = u - uh, 

(2a - p)Ile112 + (2fl - A.) 1 Ve 12 < inf (i1 - Ahuh + fh 12 +? llrhii2) 
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for a > 0, where p and A satisfy 2a > p > 0 and 2fi > A > 0, and 

2aJ1e112 + fiIJVeII2< 1 inf (k11_Ahuh+fhIl+llrhIl) 

for a > 0, in which 

[1 1 

x 7y 

where 1, and 4y indicate the length of the projections of Q into the x-axis and 
y-axis, respectively. 

Proof. By assumption H2, we have for L in Lemma 2, 

L > aIleII2 + ,JIIVeII2. 

On the other hand, Lemma 2 gives 

L < I (AhUh + fh, e)I + I(rh, Ve)I 

< 11 _-AhUh + fhII hlell + lirhl IlVell. 

Hence, 

(4.5) aI|eII2 + ,8JIVeII2 < 11 _- Auh + fhII Ilell + lirhil lJVell. 

Applying the Schwarz inequality to the right-hand side of (4.5), we get 

- AhUh + fhII Ilell + lirhil IlVell 

< I(pIeII2 + AIIVeil2) + 2-11 -A huh + +J1rhiI2) 2 2 P~~~~~~~fhI 

Combining this with (4.5) and taking the inf of I II - Ahuh + fh112 + 1Ilrh 112 
proves the first estimate. 

The second estimate is derived as follows: By the Poincare inequality, le I I < 
llVell/K [6, p. 196] and by Schwarz's inequality, 

- _,Ahuh + fh 11 hlell + lirh II ||Veil 

< (xii -AhUh + fhll + lirhil) lVel 

< =IIJVeII2 + 1 -Ahuh + fhll + llrhll) 

Combining this with (4.5) and taking the inf of (III -Ah uh +fhll + IIrhII)2 gives 
the second estimate. 5 

5. NUMERICAL RESULTS 

In this section, we apply our a posteriori error estimating method to three 
nonlinear elliptic problems and verify the effectiveness of our method. 
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FIGURE 3 

The first problem is 

Problem 1. 

-Au+u3+u=g1 inQ=(O, l)x(O, 1), 

UIoa = 0, 

where gi is chosen such that 

u(x, y) = 8x(y - 1) sin(ny(x - 1)) 

satisfies the above equation. It is easy to verify assumption Hi. Assumption 
H2 is fulfilled as follows: 

(V(v - W), V(v - W)) + (V3 + V - W3- W V -W) 

> liV - w112 + IIV(V - W)112, 

because (v3 - W3, v - w) > 0 holds. Therefore, the two estimates in our 
theorem can be applied with a = fi = 1. For the present problem, we use the 
second estimate, since it gives sharper bounds than the first. 

The interval (O, 1) is divided into m equidistant subintervals and a trian- 
gulation is made as in Figure 3. 

Numerical solutions uh with a piecewise linear form were obtained by min- 
imizing the functional 

j [2IVuh1 + IjUh)4 + IjUh)2 - giu ] dx dy. 

Next, optimal error bounds were computed by solving the quadratic minimiza- 
tion problem 

inf K2I - Ahuh + (Uh)3 + Uh - gi 112 + I1rh12] 5 

where K = vAdn. We compared these optimal error bounds with the exact 
errors V/211e112 + IIVeIJ2. A posteriori error bounds using natural parameters 
were also computed for comparison. 
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error bounds in the case that 
m /21Ie112 + I IVel2 optimal error bounds all parameters are equal to 0.5 

4 1.462 2.448 4.446 

6 0.998 1.671 3.396 

8 0.745 1.263 2.851 

10 0.597 1.014 2.532 

12 0.498 0.847 2.328 

14 0.427 0.727 2.189 

16 0.374 0.636 2.087 

We see from this table that the ratio of the optimal error bounds to the exact 
errors is about 1.7. The error bounds using natural parameters are too large. 

The second problem is 

Problem 2. 
-AU + U3 = g2 in Q = (0, 1) x (0, 1), 

UIoa = 0. 
The function g2 is chosen such that 

u(x, y) = 8x(y - 1) sin(iy(x - 1)) 

satisfies the above equation. Assumption Hi is easily verified. Assumption H2 
is fulfilled with a = 0 and /f = 1, since 

(V(V - W), V(v - W)) + (V3 - W3, V - W) > IIV(V - W)112. 

Hence, the second estimate in our theorem holds. We make a triangulation as 
in Problem 1 (see Figure 3). Piecewise linear solutions uh were computed by 
minimizing the functional 

j [2IVu h + I(Uh)4 - g2Uh] dxdy. 

Optimal error bounds were obtained by solving the quadratic minimization 
problem 

inf [ - Ahuh + (uh)3 - g212 + Irh 112] 

where K = VI2n. As in Problem 1, we compared such optimal errors with the 
exact errors IIVelI and a posteriori errors using natural parameters. 

error bounds in the case that 
m IIVell optimal error bounds all parameters are equal to 0.5 

4 1.455 2.440 4.432 

6 0.986 1.668 3.391 

8 0.744 1.262 2.848 

10 0.597 1.014 2.531 

12 0.498 0.847 2.328 

14 0.427 0.727 2.188 

16 0.374 0.636 2.086 
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The data in this table are almost the same as in the first table. 

The last problem is 

Problem 3. 

-Au + cos(u) = g3 in Q = (0, 1) x (0, 1), 

ulao = 0. 

The function g3 is chosen such that 

u(x, y) = 8x(y - 1) sin(ny(x - 1)) 

satisfies the above equation. Assumption Hi is easily verified. Since 

(V(v -w), V(v -w)) + (cos(v) -cos(w), v -w) 

> IIV(v - w)II - Iv - w112 > (1 -_ IIV(v - w)112 

for K = vI'n, assumption H2 is fulfilled with a = 0 and JJ = 1 - 1/K2. 
Thus the second estimate in our theorem holds. We make a triangulation as 
in Problem 1 (see Figure 3). Piecewise linear solutions uh were obtained by 
minimizing the functional 

j [IvuIh 12 + sin(uh) - g3 Uh] dx dy. 

The quadratic minimization problem 

inf 11 - Ah|uh + cos(uh) - g3112 + Ir h 112] 

was solved to get optimal error bounds. Furthermore, these optimal errors 
were compared with the exact errors II VelI and a posteriori errors using natural 
parameters. 

error bounds in the case that 
m liVeil optimal error bounds all parameters are equal to 0.5 

4 1.458 2.557 4.658 

6 0.987 1.753 3.569 

8 0.744 1.327 2.999 

10 0.597 1.067 2.665 

12 0.498 0.891 2.452 

14 0.427 0.765 2.305 

16 0.374 0.670 2.198 

The ratio of the optimal errors to the exact errors is about 1.8. The results 
obtained using natural parameters are too large. 

The experiment was performed by using Turbo Pascal Ver.5.5 on the personal 
computer EPSON PC-286UX. 
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